rank	Vector and Matrix
Syntax	rank(A)
Description	Returns the rank of a matrix A, i.e., the maximum number of linearly independent columns in A.
Arguments A	real $m \times n$ matrix
Algorithm	Singular value computation (Wilkinson and Reinsch, 1971)
rbeta	Random Numbers
Syntax	rbeta(<i>m</i> , <i>s</i> 1, <i>s</i> 2)
Description	Returns a vector of <i>m</i> random numbers having the beta distribution.
Arguments m s1, s2	integer, $m > 0$ real shape parameters, $s1 > 0$, $s2 > 0$
Algorithm	Best's XG algorithm, Johnk's generator (Devroye, 1986)

_			
- L	:		

See also

rnd

rbinom		Random Numbers
Syntax	rbinom(m, n, p)	
Description	Returns a vector of <i>m</i> random numbers having the binomial distribution.	
Arguments		
<i>m</i> , <i>n</i>	integers, $m > 0$, $n > 0$	
р	real number, $0 \le p \le 1$	
Algorithm	Waiting time and rejection algorithms (Devroye, 1986)	
See also	rnd	

rcauchy	Rando	om Numbers
Syntax	rcauchy(m, l, s)	
Description	Returns a vector of <i>m</i> random numbers having the Cauchy distribution.	
Arguments m l s Algorithm See also	integer, $m > 0$ real location parameter real scale parameter, $s > 0$ Inverse cumulative density method (Press <i>et al.</i> , 1992) rnd	
rchisq	Rando	om Numbers
Syntax	rchisq(m, d)	
Description	Returns the vector of m random numbers having the chi-squared distribution.	
Arguments <i>m</i> <i>d</i> Algorithm See also	integer, $m > 0$ integer degrees of freedom, $d > 0$ Best's XG algorithm, Johnk's generator (Devroye, 1986) rnd	
Re	Comp	lex Numbers
Syntax	Re(z)	
Description	Returns the real part of z.	
Arguments	real or complex number	

See also Im

READ_BLUE (Professional)

File Access

Syntax	READ_BLUE(file)
Description	Extracts only the blue component from <i>file</i> of a color image in BMP, GIF, JPG or TGA format. The result is a matrix with one-third as many columns as the matrix returned by READ_RGB.
Arguments <i>file</i>	string variable corresponding to color image filename or path

READBMP File Access Syntax READBMP(file) Description Creates a matrix containing a grayscale representation of the bitmap image in *file*. Each element in the matrix corresponds to a pixel. The value of a matrix element determines the shade of gray associated with the corresponding pixel. Each element is an integer between 0 (black) and 255 (white). Arguments file string variable corresponding to grayscale image BMP filename or path Comments After you have read an image file into Mathcad, you can use the *picture operator* to view it. Mathcad Professional includes a function READ_IMAGE which reads not only BMP files but also GIF. JPG, and TGA files. See also For color images, see READRGB. **READ GREEN** (Professional) File Access Syntax READ_GREEN(file) Description Extracts only the green component from *file* of a color image in BMP, GIF, JPG or TGA format. The result is a matrix with one-third as many columns as the matrix returned by READ_RGB. Arguments file string variable corresponding to color image filename or path **READ HLS** (Professional) File Access Syntax READ_HLS(file)

Description Creates a matrix in which the color information in *file* is represented by the appropriate values of hue, lightness, and saturation. *file* is in BMP, GIF, JPG or TGA format.

Arguments

file string variable corresponding to color image filename or path

See also See READRGB for an overview.

READ_HLS_HUE (Professional)

File Access

Syntax READ_HLS_HUE(*file*)

Description Extracts only the hue component from *file* of a color image in BMP, GIF, JPG or TGA format. The result is a matrix with one-third as many columns as the matrix returned by READ_HLS.

Arguments

file string variable corresponding to color image filename or path

READ_HLS_	LIGHT (Professional)	File Access
Syntax	READ_HLS_LIGHT(file)	
Description	Extracts only the lightness component from <i>file</i> of a color image in BMP, GIF, format. The result is a matrix with one-third as many columns as the matrix rete READ_HLS.	JPG or TGA urned by
Arguments file	string variable corresponding to color image filename or path	
READ_HLS_	_SAT (Professional)	File Access
Syntax	READ_HLS_SAT(file)	
Description	Extracts only the saturation component from <i>file</i> of a color image in BMP, GIF format. The result is a matrix with one-third as many columns as the matrix rete READ_HLS.	, JPG or TGA urned by
Arguments file	string variable corresponding to color image filename or path	
READ_HSV	(Professional)	File Access
Syntax	READ_HSV(file)	
Description	Creates a matrix in which the color information in <i>file</i> is represented by the app of hue, saturation and value. <i>file</i> is in BMP, GIF, JPG or TGA format.	propriate values
Arguments		
file	string variable corresponding to color image intename or path	
See also	See READRGB for an overview of reading color data files.	
READ_HSV_	_HUE (Professional)	File Access

Syntax READ_HSV_HUE(*file*)

Description Extracts only the hue component from *file* of a color image in BMP, GIF, JPG or TGA format. The result is a matrix with one-third as many columns as the matrix returned by READ_HSV.

Arguments

file string variable corresponding to color image filename or path

READ_HSV_SAT (Professional)

File Access

File Access

Syntax READ_HSV_SAT(*file*)

Description Extracts only the saturation component from *file* of a color image in BMP, GIF, JPG or TGA format. The result is a matrix with one-third as many columns as the matrix returned by READ_HSV.

Arguments

file string variable corresponding to color image filename or path

READ_HSV_VALUE (Professional)

Syntax READ_HSV_VALUE(file)

Description Extracts only the value component from *file* of a color image in BMP, GIF, JPG or TGA format. The result is a matrix with one-third as many columns as the matrix returned by READ_HSV.

Arguments

file string variable corresponding to color image filename or path

READ_IMAGE (Professional)

Syntax READ_IMAGE(*file*)

Description Creates a matrix containing a grayscale representation of the image in *file*. Each element in the matrix corresponds to a pixel. The value of a matrix element determines the shade of gray associated with the corresponding pixel. Each element is an integer between 0 (black) and 255 (white). *file* is in BMP, GIF, JPG or TGA format.

9.		
	file	string variable corresponding to grayscale image filename or path

See also For color images, see READRGB.

READPRN

Arguments

File Access

Syntax	READPRN(<i>file</i>)
Description	Reads a structured ASCII data file and returns a matrix. Each line in the data file becomes a row in the matrix. The number of elements in each row must be the same. Used as follows: A := READPRN(file).
Arguments file	string variable corresponding to structured ASCII data filename or path
Comments	The READPRN function reads an entire data file, determines the number of rows and columns, and creates a matrix out of the data.
	When Mathcad reads data with the READPRN function:
	• Each instance of the READPRN function reads an entire data file.

- All lines in the data file must have the same number of values. (Mathcad ignores lines with no values.) If the lines in the file have differing numbers of values, Mathcad marks the READPRN equation with an error message. Use a text editor to replace the missing values with zeros before you use READPRN.
- The READPRN function ignores text in the data file.
- The result of reading the data file is an *m*-by-*n* matrix **A**, where *m* is the number of lines containing data in the file and *n* is the number of values per line.

WRITEPRN and READPRN allow you to write out and read in *nested arrays* created in Mathcad Professional.

READ_RED	(Professional)	File Access
Syntax	READ_RED(file)	
Description	Extracts only the red component from <i>file</i> of a color image in BMP, G result is a matrix with one-third as many columns as the matrix returned.	IF, JPG or TGA format.The rned by READ_RGB.
Arguments file	string variable corresponding to color image filename or path	
READRGB		File Access

Syntax READRGB(*file*)

Description Creates a matrix in which the color information in the BMP file *file* is represented by the appropriate values of red, green, and blue. This matrix consists of three submatrices, each with the same number of columns and rows. Three matrix elements, rather than one, correspond to each pixel. Each element is an integer between 0 and 255. The three corresponding elements, when taken together, establish the color of the pixel.

Arguments

file string variable corresponding to color image filename or path

Example

```
conter > "Chimospect/anomalism.bmp"

gray > READEMP(color)

procked > READEMP(color)

r \Rightarrow rever(procked) = 1 = c \Rightarrow \frac{color(procked)}{3}

red = submotive(procked, 0, c, 0, c = 1)

grave = submotive(procked, 0, c, 0, 2, 4 = 1)

blas = submotive(procked, 0, c, 2, c, 3, c = 1)
```

Comments To partition the matrix for a color image into its red, green, and blue components, use the submatrix function formulas shown in the example above. In this example, the color bitmap file **monalisa.bmp** is read into a grayscale matrix **gray**, as well as the packed RGB matrix **packed**, and then converted into three submatrices called **red**, **green**, and **blue**.

After you have read an image file into Mathcad, you can use the picture operator to view it.

Mathcad Professional includes several specialized functions for reading color images or image components, including functions for reading images in GIF, JPG, and TGA formats.

Consult the following table to decide which function to use:

To separate a file into these components:	Use these functions:
red, green, and blue (RGB)	READ_RED, READ_GREEN, READ_BLUE
hue, lightness, and saturation (HLS)	READ_HLS, READ_HLS_HUE, READ_HLS_LIGHT, READ_HLS_SAT,
hue, saturation, and value (HSV)	READ_HSV, READ_HSV_HUE, READ_HSV_SAT, READ_HSV_VAL

Note READ_HLS and READ_HSV work in exactly the same way as READRGB. All the others work in exactly the same way as READBMP.

See also For grayscale images, see READBMP.

regress

Regression and Smoothing

One-dimensional Case

Syntax	regress(vx, vy, n)
--------	--------------------

Description Returns the vector required by the interp function to find the *n*th order polynomial that best fits data arrays **vx** and **vy**.

Arguments

- vx, vy real vectors of the same size
 - n integer, n > 0

Example

Comments The regression functions regress and loess are useful when you have a set of measured y values corresponding to x values and you want to fit a polynomial of degree n through those y values. (For a simple linear fit, that is, n=1, you may as well use the slope and intercept functions.)

Use regress when you want to use a single polynomial to fit all your data values. The regress function lets you fit a polynomial of any order. However as a practical matter, you would rarely need to go beyond n = 6.

Since **regress** tries to accommodate all your data points using a single polynomial, it will not work well when your data does not behave like a single polynomial. For example, suppose you expect your y_i to be linear from x_1 to x_{10} and to behave like a cubic equation from x_{11} to x_{20} . If you use **regress** with n = 3 (a cubic), you may get a good fit for the second half but a poor fit for the first half.

The loess function, available in Mathcad Professional only, alleviates these kinds of problems by performing a more localized regression.

For regress, the first three components of the output vector $\mathbf{vr} := \operatorname{regress}(\mathbf{vx}, \mathbf{vy}, n)$ are $\mathbf{vr}_0=3$ (a code telling interp that \mathbf{vr} is the output of regress as opposed to a spline function or loess), $\mathbf{vr}_1=3$ (the index within \mathbf{vr} where the polynomial coefficients begin), and $\mathbf{vr}_2=n$ (the order of the fit). The remaining n + 1 components are the coefficients of the fitting polynomial from the lowest degree term to the highest degree term.

Two-dimensional Case

Syntax	regress(Mxy, vz, n)
Description	Returns the vector required by the interp function to find the <i>n</i> th order polynomial that best fits data arrays Mxy and vz . Mxy is an $m \times 2$ matrix containing <i>x</i> - <i>y</i> coordinates. vz is an <i>m</i> -element vector containing the <i>z</i> coordinates corresponding to the <i>m</i> points specified in Mxy .
Arguments Myy	real $m \times 2$ matrix containing r-v coordinates of the <i>m</i> data points
vz	real <i>m</i> -element vector containing the <i>z</i> coordinates corresponding to the points specified in $\mathbf{M}\mathbf{x}\mathbf{y}$
n	integer, $n > 0$
Comments	Assume, for example, that you have a set of measured z values corresponding to x and y values and you want to fit a polynomial surface through those z values. The meanings of the input arguments are more general than in the one-dimensional case:
	• The argument vx , which was an <i>m</i> -element vector of <i>x</i> values, becomes an $m \times 2$ matrix, Mxy . Each row of Mxy contains an <i>x</i> in the first column and a corresponding <i>y</i> value in the second column.
	• The argument <i>x</i> for the interp function becomes a 2-element vector v whose elements are the <i>x</i> and <i>y</i> values at which you want to evaluate the polynomial surface representing the best fit to the data points in Mxy and vz .
	This discussion can be extended naturally to higher dimensional cases. You can add independent variables by simply adding columns to the Mxy array. You would then add a corresponding number of rows to the vector v that you pass to the interp function. The regress function can have as many independent variables as you want. However, regress will calculate more slowly and require more memory when the number of independent variables and the degree are greater than four. The loess function is restricted to at most four independent variables.
	Keep in mind that for regress, the number of data values, m must satisfy $m > \binom{n+k-1}{n} \cdot \frac{n+k}{k}$,
	where k is the number of independent variables (hence the number of columns in $\mathbf{M}\mathbf{x}\mathbf{y}$), n is the degree of the desired polynomial, and m is the number of data values (hence the number of rows in $\mathbf{v}\mathbf{z}$). For example, if you have five explanatory variables and a fourth degree polynomial, you will need more than 126 observations.
	The loess function, available in Mathcad Professional, works better than regress when your data does not behave like a single polynomial.
Algorithm	Normal equation solution through Gauss-Jordan elimination (Press et al., 1992)

relax	(Professional)	Differential Equation Solving
Syntax	relax(A, B, C, D, E, F, U, <i>rjac</i>)	
Description	Returns a matrix of solution values for a Poisson pa region. More general than multigrid, which is fast	artial differential equation over a planar square ter.
Arguments		
A, B, C, D, E	real square matrices all of the same size containing example, the left-hand side of equations below).	g coefficients of the discretized Laplacian (for
F	real square matrix containing the source term at ea sought (for example, the right-hand side of equati	ach point in the region in which the solution is ions below).
U	real square matrix containing boundary values alo for the solution inside the region.	ong the edges of the region and initial guesses
rjac	spectral radius of the Jacobi iteration, $0 < rjac < relaxation$ algorithm. Its optimal value depends on	1, which controls the convergence of the n the details of your problem.
Example		

Comments

Two partial differential equations that arise often in the analysis of physical systems are Poisson's equation:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \rho(x, y)$$
 and its homogeneous form, Laplace's equation.

Mathcad has two functions for solving these equations over a square region, assuming the values taken by the unknown function u(x, y) on all four sides of the boundary are known. The most general solver is the relax function. In the special case when u(x, y) is known to be zero on all four sides of the boundary, you can use the multigrid function instead. This function will often solve the problem faster than relax. If the boundary condition is the same on all four sides, you can simply transform the equation to an equivalent one in which the value is zero on all four sides.

The relax function returns a square matrix in which:

- an element's location in the matrix corresponds to its location within the square region, and
- its value approximates the value of the solution at that point.

This function uses the relaxation method to converge to the solution. Poisson's equation on a square domain is represented by:

 $a_{j,k}u_{j+1,k} + b_{j,k}u_{j-1,k} + c_{j,k}u_{j,k+1} + d_{j,k}u_{j,k-1} + e_{j,k}u_{j,k} = f_{j,k}.$

Algorithm Gauss-Seidel with successive overrelaxation (Press *et al.*, 1992)

See also multigrid

reverse

See also

rnd

One-dimensional	Case	
Syntax	reverse(v)	
Description	Reverses the order of the elements of vector v .	
Arguments v	vector	
Two-dimensional	Case	
Syntax	reverse(A)	
Description	Reverses the order of the rows of matrix A .	
Arguments A	matrix	
See also	See sort for sample application.	
rexp	Random Numb	oers
Syntax	rexp(<i>m</i> , <i>r</i>)	
Description	Returns a vector of <i>m</i> random numbers having the exponential distribution.	
Arguments m	integer, $m > 0$ real rate, $r > 0$	

Algorithm Inverse cumulative density method (Press *et al.*, 1992)

Sorting

Random	Numbers

Syntax	rF(<i>m</i> , <i>d</i> 1, <i>d</i> 2)
Description	Returns a vector of m random numbers having the F distribution.
Arguments m d1, d2	integer, $m > 0$ integer degrees of freedom, $d1 > 0$, $d2 > 0$
Algorithm	Best's XG algorithm, Johnk's generator (Devroye, 1986)
See also	rnd

rgamma

rF

Random Numbers

Random Numbers

Syntax	rgamma(m, s)
Description	Returns a vector of m random numbers having the gamma distribution.
Arguments m	integer, $m > 0$ real shape parameter, $s > 0$
Algorithm	Best's XG algorithm, Johnk's generator (Devroye, 1986)
See also	rnd

rgeom

Syntaxrgeom(m, p)DescriptionReturns a vector of m random numbers having the geometric distribution.Argumentsmminteger, m > 0preal number, 0 AlgorithmInverse cumulative density method (Press*et al.*, 1992)See alsornd

-	
rhypergeom	Random Numbers
Syntax	rhypergeom(m, a, b, n)
Description	Returns a vector of m random numbers having the hypergeometric distribution.
Arguments	
m	integer, $m > 0$
<i>a</i> , <i>b</i> , <i>n</i>	integers, $0 \le a$, $0 \le b$, $0 \le n \le a + b$
Algorithm	Uniform sampling methods (Devroye, 1986)
See also	rnd
rkadapt	(Professional) Differential Equation Solving
Syntax	rkadapt(y, x1, x2, acc, D, kmax, save)
Description	Solves a differential equation using a slowly varying Runge-Kutta method. Provides DE solution estimate at x^2 .
Arguments y	Several arguments for this function are the same as described for rkfixed. real vector of initial values
x1, x2	real endpoints of the solution interval
$\mathbf{D}(x, \mathbf{y})$	real vector-valued function containing the derivatives of the unknown functions
acc	real $acc > 0$ controls the accuracy of the solution; a small value of acc forces the algorithm to take smaller steps along the trajectory, thereby increasing the accuracy of the solution. Values of acc around 0.001 will generally yield accurate solutions.
kmax	integer $kmax > 0$ specifies the maximum number of intermediate points at which the solution will be approximated. The value of $kmax$ places an upper bound on the number of rows of the matrix returned by these functions.
save	real $save > 0$ specifies the smallest allowable spacing between the values at which the solutions are to be approximated. <i>save</i> places a lower bound on the difference between any two numbers in the first column of the matrix returned by the function.
Comments	The specialized DE solvers Bulstoer, Rkadapt, Stiffb, and Stiffr provide the solution $y(x)$ over a number of uniformly spaced <i>x</i> -values in the integration interval bounded by $x1$ and $x2$. When you want the value of the solution at only the endpoint, $y(x2)$, use bulstoer, rkadapt, stiffb, and stiffr instead.
Algorithm	Adaptive step 5th order Runge-Kutta method (Press et al., 1992)
See also	rkfixed, a more general differential equation solver, for information on output and arguments; Rkadapt.

Rkadapt	(Professional)	Differential Equation Solving
Syntax	Rkadapt(y, x1, x2, npts, D)	
Description	Solves a differential equation using a slo at equally spaced x values by repeated	wy varying Runge-Kutta method; provides DE solution calls to rkadapt.
Arguments y	All arguments for this function are the real vector of initial values	same as described for rkfixed.
x1, x2	real endpoints of the solution interval	
npts	integer <i>npts</i> > 0 specifies the number of approximated; controls the number of n	points beyond initial point at which the solution is to be ows in the matrix output
$\mathbf{D}(x, \mathbf{y})$	real vector-valued function containing	the derivatives of the unknown functions
Comments	Given a fixed number of points, you can it frequently wherever it's changing fas If you know that the solution has this p rkfixed which evaluates a solution at ec solution is changing and adapts its step s Rkadapt to focus on those parts of the in rather than wasting time on the parts w	a approximate a function more accurately if you evaluate t, and infrequently wherever it's changing more slowly. roperty, you may be better off using Rkadapt . Unlike jually spaced intervals, Rkadapt examines how fast the ize accordingly. This "adaptive step size control" enables ntegration domain where the function is rapidly changing here change is minimal.
	Although Rkadapt will use nonuniform equation, it will nevertheless return the	n step sizes internally when it solves the differential solution at equally spaced points.
	Rkadapt takes the same arguments as in form to that returned by rkfixed.	kfixed, and the matrix returned by Rkadapt is identical
Algorithm	Fixed step Runge-Kutta method with a	laptive intermediate steps (5th order) (Press et al., 1992)
See also	rkfixed, a more general differential equ	ation solver, for information on output and arguments.
rkfixed		Differential Equation Solving
Syntax	rkfixed(y, x1, x2, npts, D)	
Description	Solves a differential equation using a sequally spaced x values.	andard Runge-Kutta method. Provides DE solution at
Arguments		
у	real vector of initial values (whose lengt of DEs). For a first order DE like that in to one point, $y(0) = y(x1)$. For a seco elements: the value of the function and in Example 4, the vector has <i>n</i> elements For a first order system like that in Exam function. For higher order systems like the $n - 1$ derivatives of each unknown themselves.	h depends on the order of the DE or the size of the system Example 1 or Example 2 below, the vector degenerates ond order DE like that in Example 3, the vector has two its first derivative at xI . For higher order DEs like that for specifying initial conditions of $y, y', y'',, y^{(n-1)}$. ple 5, the vector contains initial values for each unknown that in Example 6, the vector contains initial values for function in addition to initial values for the functions
<i>x1, x2</i>	real endpoints of the interval on which in \mathbf{y} are the values at xI .	the solution to the DEs will be evaluated; initial values

npts integer npts > 0 specifies the number of points beyond the initial point at which the solution is to be approximated; controls the number of rows in the matrix output.

D(*x*, **y**) real vector-valued function containing derivatives of the unknown functions. For a first order DE like that in Example 1 or Example 2, the vector degenerates to a scalar function. For a second order DE like that in Example 3, the vector has two elements:

$$\mathbf{D}(t, \mathbf{y}) = \begin{bmatrix} y'(t) \\ y''(t) \end{bmatrix}$$

For higher order DEs like that in Example 4, the vector has *n* elements: $\mathbf{D}(t, \mathbf{y}) = \begin{bmatrix} y'(t) \\ y''(t) \end{bmatrix}$

For a first order system like that in Example 5, the vector contains the first derivatives of each unknown function. For higher order systems like that in Example 6, the vector contains expressions for the n - 1 derivatives of each unknown function in addition to *n*th derivatives.

Examples

Example 1: Solving a first order differential equation.

Example 2: Solving a nonlinear differential equation.

Example 3: Solving a second order differential equation.

 $|y^{\alpha\alpha}-\delta|k^2|y^{\alpha}+k^4|y=0|$ Salve - k. m. 3 Define initial conditions; y iii 2 First derivative. y₂ e− Second derivative y₂ s− Third derivative $\mathbb{D}\{t:y\} \geq \big[$ Z = ritlend (y, 0. 5, 100, 0) 4- Evaluate valuation at 100 col 1-1 and 1-5 V^EB. 900 文明. $\gamma^{\rm err}(0)$ 1 Ξ. а. 0.05 0.053 1.1042.185 4.278 1.221 2,437 0.10.542 0.151,384 2.88 1.258 1.8073.315 10.274 Z = . 1.000 10.000

Example 4: Solving a higher order differential equation.

Example 5: Solving a system of first order linear equations.

Solve	$\phi^{**} = 2 \phi^{**} - 2 \phi^{**}$	sabjectie condition	initial C	201 201	00 = 1.5 00 = 1	へ(明 一人(明	- 15 - 1		
, .	$ \begin{pmatrix} 1.8 \\ 1.8 \\ 1.5 \\ 1 \\ 1 \\ 1 \\ c \rightarrow (0) \\ c$	c- Def	ine vec	ier ef i	sitial cor	oditions			
Dix.	$\mathbf{y}_1 = \begin{bmatrix} \mathbf{y}_1 \\ -\mathbf{z}_1 \mathbf{y}_1 \\ \mathbf{y}_3 \end{bmatrix}$		e- De Int	rlinn v card i x	ector of Serivativ 1909	fint nac 91. 1700 - S	i 00 v1	n	
	4 y ₂ -	n v _e j i	ſ	0	1.5	1.5	1	1	
$\mathbb{Z} \rightarrow$	$ddicard(\mathbf{y}, 0, 0)$. 100. DJ		0.04	1.51%	1.52	1.01	1.0	
				0.02	1.52	154	1.02	1.82	
				0.00	1.549	1.561	1.03	1.12	
				0.04	1.540	1.582	1.040	1.041	
			- 12 H - 1	21. 21. P	 P. 1998. 	A 25 B 26	A 100 YO 100	A 100 A	

Example 6: Solving a system of second order linear differential equations.

Comments For a first order DE like that in Example 1 or Example 2, the output of rkfixed is a two-column matrix in which:

- The left-hand column contains the points at which the solution to the DE is evaluated.
- The right-hand column contains the corresponding values of the solution.

For a second order DE like that in Example 3, the output matrix contains three columns: the left-hand column contains the *t* values; the middle column contains y(t); and the right-hand column contains y'(t).

For higher order DEs like that in Example 4, the output matrix contains *n* columns: the left-hand one for the *t* values and the remaining columns for values of $y(t), y'(t), y''(t), ..., y^{(n-1)}(t)$.

For a first order system like that in Example 5, the first column of the output matrix contains the points at which the solutions are evaluated and the remaining columns contain corresponding values of the solutions. For higher order systems like that in Example 6:

- The first column contains the values at which the solutions and their derivatives are evaluated.
- The remaining columns contain corresponding values of the solutions and their derivatives. The order in which the solutions and their derivatives appear matches the order in which you put them into the vector of initial conditions.

The most difficult part of solving a DE is defining the function $\mathbf{D}(x, \mathbf{y})$. In Example 1 and Example 2, for example, it was easy to solve for y'(x). In some more difficult cases, you can solve for y'(x) symbolically and paste it into the definition for $\mathbf{D}(x, \mathbf{y})$. To do so, use the **Solve** keyword or the **Solve for Variable** command from the **Symbolics** menu.

The function rkfixed uses a fourth order Runge-Kutta method, which is a good general-purpose DE solver. Although it is not always the fastest method, the Runge-Kutta method nearly always succeeds. There are certain cases in which you may want to use one of Mathcad's more specialized DE solvers. These cases fall into three broad categories:

	• Your system of DEs may have certain properties which are best exploited by functions other than rkfixed. The system may be stiff (Stiffb, Stiffr); the functions could be smooth (Bulstoer) or slowly varying (Rkadapt).
	• You may have a boundary value rather than an initial value problem (sbval and bvalfit).
	• You may be interested in evaluating the solution only at one point (bulstoer, rkadapt, stiffb and stiffr).
	You may also want to try several methods on the same DE to see which one works the best. Sometimes there are subtle differences between DEs that make one method better than another.
Algorithm	Fixed step 4th order Runge-Kutta method (Press et al., 1992)
See also	Mathcad Resource Center QuickSheets and Differential Equations tutorial.
Algorithm See also	 You may be interested in evaluating the solution only at one point (DUIStOEr, rkadapt, Stiffb and stiffr). You may also want to try several methods on the same DE to see which one works the best. Sometimes there are subtle differences between DEs that make one method better than another. Fixed step 4th order Runge-Kutta method (Press <i>et al.</i>, 1992) Mathcad Resource Center QuickSheets and Differential Equations tutorial.

rlnorm

Random Numbers

Random Numbers

Syntax	rlnorm(m, μ, σ)
Description	Returns a vector of <i>m</i> random numbers having the lognormal distribution.
Arguments	
m	integer, $m > 0$
μ	real logmean
σ	real logdeviation, $\sigma > 0$
Algorithm	Ratio-of-uniforms method (Devroye, 1986)
See also	rnd

rlogis

Syntax	rlogis(m, l, s)
Description	Returns a vector of m random numbers having the logistic distribution.
Arguments	
m	integer, $m > 0$
l	real location parameter
S	real scale parameter, $s > 0$
Algorithm	Inverse cumulative density method (Press et al., 1992)
See also	rnd

rnbinom

Random Numbers

Syntax	rnbinom(m, n, p)
Description	Returns a vector of m random numbers having the negative binomial distribution.
Arguments <i>m</i> , <i>n</i> <i>p</i>	integers, $m > 0$, $n > 0$ real number, 0
Algorithm	Based on rpois and rgamma (Devroye, 1986)
See also	rnd

rnd

Random Numbers

Syntax rnd(x)

Description Returns a random number between 0 and x. Identical to runif(1, 0, x) if x > 0.

Arguments

real number

Example

х

Note: You won't be able to recreate this example exactly because the random number generator gives different numbers every time.

Comments Each time you recalculate an equation containing rnd or some other random variate built-in function, Mathcad generates new random numbers. Recalculation is performed by clicking on the equation and choosing **Calculate** from the **Math** menu.

These functions have a "seed value" associated with them. Each time you reset the seed, Mathe generates new random numbers based on that seed. A given seed value will always generate t same sequence of random numbers. Choosing Calculate from the Math menu advances Mathe along this random number sequence. Changing the seed value, however, advances Mathcad alo an altogether different random number sequence.	
To change the seed value, choose Options from the Math menu and change the value of "seed on the Built-In Variables tab. Be sure to supply an integer.	
To reset Mathcad's random number generator without changing the seed value, choose Options from the Math menu, click on the Built-In Variables tab, and click "OK" to accept the current seed. Then click on the equation containing the random number generating function and choose Calculate from the Math menu. Since the randomizer has been reset, Mathcad generates the same random numbers it would generate if you restarted Mathcad.	
There are many other random variate generators in Mathcad.	
Linear congruence method (Knuth, 1997)	
Random Numbers	
rnorm(m , μ , σ)	
Returns a vector of <i>m</i> random numbers having the normal distribution.	
integer, m > 0 real mean real standard deviation, σ > 0 w := morm(8000.0.1) ← Generate a sector of tandom members having the standard normal distribution. m := 0 = 20 int _m := -1 + .1 m = h = hint(int , w) ← Sect the members into bits and court have more on	
Note: You won't be able to recreate this example exactly because the random number generator gives different numbers every time.	

Algorithm Ratio-of-uniforms method (Devroye, 1986)

See also rnd

root

Syntax root(f(var), var)

Description Returns a value of *var* at which the expression f(var) or function f is equal to 0.

Arguments

var f real or complex scalar; *var* must be assigned a guess value before using this version of root. real or complex-valued function.

Example

Comments

For expressions with several roots, your guess value determines which root Mathcad returns. The example shows a situation in which the **root** function returns several different values, each of which depends on the initial guess value.

You can't put numerical values in the list of unknowns; for example, root(f(x), -2) or root(14, -2) is not permitted in the example above.

Mathcad solves for complex roots as well as real roots. To find a complex root, you must start with a complex value for the initial guess.

Solving an equation of the form f(x) = g(x) is equivalent to using the root function as follows:

root(f(x) - g(x), x)

The root function can solve only one equation in one unknown. To solve several equations simultaneously, use Find or Minerr. To solve an equation symbolically, that is, to find an exact numerical answer in terms of elementary functions, choose **Solve for Variable** from the **Symbolics** menu or use the **solve** keyword.

See also polyroot for an efficient means to compute all roots of a polynomial at once.

Mathcad evaluates the root function using the *secant method*. If that method fails to find a root, then the *Mueller method* is used. The guess value you supply for *x* becomes the starting point for successive approximations to the root value. When the magnitude of f(x) evaluated at the proposed root is less than the value of the predefined variable TOL, the root function returns a result.

If after many approximations Mathcad still cannot find an acceptable answer, it marks the root function with an error message indicating its inability to converge to a result. This error can be caused by any of the following:

- The expression has no roots.
- The roots of the expression are far from the initial guess.
- The expression has local maxima or minima between the initial guess and the roots.
- The expression has discontinuities between the initial guess and the roots.
- The expression has a complex root but the initial guess was real (or vice versa).

To find the cause of the error, try plotting the expression. This will help determine whether or not the expression crosses the *x*-axis and if so, approximately where. In general, the closer your initial guess is to where the expression crosses the *x*-axis, the more quickly the **root** function will converge on an acceptable result.

Here are some hints for getting the most out of the root function:

- To change the accuracy of the root function, change the value of the built-in variable TOL. If you increase TOL, the root function will converge more quickly, but the answer will be less accurate. If you decrease TOL, the root function will converge more slowly, but the answer will be more accurate. To change TOL at a specified point in the worksheet, include a definition like *TOL* := 0.01 . To change TOL for the whole worksheet, choose **Options** from the **Math** menu, click on the Built-In Variables tab, and replace the number in the text box beside "TOL." After you click "OK," choose **Calculate Worksheet** from the **Math** menu to update the entire worksheet using the new value of TOL.
- If an expression has multiple roots, try different guess values to find them. Plotting the function is a good way to determine how many roots there are, where they are, and what initial guesses are likely to find them. Refer to the previous example. If two roots are close together, you may have to reduce TOL to distinguish between them.
- If f(x) has a small slope near its root, then root(f(x), x) may converge to a value *r* that is relatively far from the actual root. In such cases, even though |f(r)| < TOL, *r* may be far from the point where f(r) = 0. To find a more accurate root, decrease the value of TOL.

Or, try finding root(g(x), x), where $g(x) = \frac{f(x)}{\frac{d}{dx}f(x)}$.

• For an expression f(x) with a known root r, solving for additional roots of f(x) is equivalent to solving for roots of h(x) = (f(x))/(x-r). Dividing out known roots like this is useful for resolving two roots that may be close together. It's often easier to solve for roots of h(x) as defined here than it is to try to find other roots for f(x) with different guesses.

Algorithm Secant and Mueller methods (Press *et al.*, 1992; Lorczak)

round

Truncation and Round-off

One-argument V	ersion
Syntax	round(x)
Description	Rounds the real number x to the nearest integer. Same as round(x , 0).
Arguments x	real number

Two-argument V	/ersion		
Syntax	round(x, n)		
Description	Rounds the real number x to n decimal places. If $n < 0$, x is rounded to the left of the decimal point.		
Arguments x n See also	real number integer ceil, floor, trunc		
rows		Vector and Matrix	
Syntax	rows(A)		
Description	Returns the number of rows in array A .		
Arguments A See also	matrix or vector cols for example		
rpois		Random Numbers	
Syntax	$rpois(m, \lambda)$		
Syntax Description	rpois(m , λ) Returns a vector of m random numbers having the Poisson distribution.		
Syntax Description Arguments m λ	rpois(m , λ) Returns a vector of m random numbers having the Poisson distribution. integer, $m > 0$ real mean, $\lambda > 0$		
Syntax Description Arguments m λ Algorithm	rpois (m, λ) Returns a vector of <i>m</i> random numbers having the Poisson distribution. integer, $m > 0$ real mean, $\lambda > 0$ Devroye, 1986		
Syntax Description Arguments m λ Algorithm See also	rpois (m, λ) Returns a vector of <i>m</i> random numbers having the Poisson distribution. integer, $m > 0$ real mean, $\lambda > 0$ Devroye, 1986 rnd		
Syntax Description Arguments ^m λ Algorithm See also	rpois(m , λ) Returns a vector of m random numbers having the Poisson distribution. integer, $m > 0$ real mean, $\lambda > 0$ Devroye, 1986 rnd	Vector and Matrix	
Syntax Description Arguments m λ Algorithm See also rref Syntax	rpois(m , λ) Returns a vector of m random numbers having the Poisson distribution. integer, $m > 0$ real mean, $\lambda > 0$ Devroye, 1986 rnd	Vector and Matrix	
Syntax Description Arguments $\frac{m}{\lambda}$ Algorithm See also rref Syntax Description	rpois(m , λ) Returns a vector of m random numbers having the Poisson distribution. integer, $m > 0$ real mean, $\lambda > 0$ Devroye, 1986 rnd rref(A) Returns a matrix representing the row-reduced echelon form of A .	Vector and Matrix	
Syntax Description Arguments m λ Algorithm See also rref Syntax Description Arguments A	rpois(m , λ) Returns a vector of m random numbers having the Poisson distribution. integer, $m > 0$ real mean, $\lambda > 0$ Devroye, 1986 rnd rref(A) Returns a matrix representing the row-reduced echelon form of A . real $m \times n$ matrix	Vector and Matrix	

rsort		Sorting
Syntax	$rsort(\mathbf{A}, i)$	-
Description	Sorts the columns of the matrix \mathbf{A} by placing the elements in row i in asce is the same size as \mathbf{A} .	ow <i>i</i> in ascending order. The result
Arguments A i	$m \times n$ matrix or vector integer, $0 \le i \le m - 1$	
Algorithm	Heap sort (Press et al., 1992)	
See also	sort for more details, csort	
rt		Random Numbers
Syntax	rt(m, d)	
Description	Returns a vector of m random numbers having Student's t distribution.	
Arguments m d	integer, $m > 0$ integer degrees of freedom, $d > 0$	
Algorithm	Best's XG algorithm, Johnk's generator (Devroye, 1986)	
See also	rnd	
runif		Random Numbers
Syntax	$\operatorname{runif}(m, a, b)$	
Description	Returns a vector of m random numbers having the uniform distribution	
Arguments m a, b	integer, $m > 0$ real numbers, $a < b$	
Algorithm	Linear congruence method (Knuth, 1997)	

See also

rnd

rweibull

File Access

Syntax	rweibull(m, s)
Description	Returns a vector of <i>m</i> random numbers having the Weibull distribution.
Arguments	
m	integer, $m > 0$
S	real shape parameter, $s > 0$
Algorithm	Inverse cumulative density method (Press et al., 1992)
See also	rnd

SaveColormap

Syntax	SaveColormap(file, M)	
Description	Creates a colormap <i>file</i> containing the values in the matrix M . Returns the number of rows written to <i>file</i> .	
Arguments file M	string variable corresponding to CMP filename integer matrix with three columns and whose elements $\mathbf{M}_{i, j}$ all satisfy $0 \le \mathbf{M}_{i, j} \le 255$.	
Comments	The file <i>file</i> is the name of a colormap located in the CMAPS subdirectory of your Mathcad directory. After you use SaveColormap , the colormap is available on the Advanced tab in the 3D Plot Format dialog box. See on-line Help for more information.	
See also	LoadColormap	
sbval	(Professional) Differential Equation Solving	
sbval Syntax	(Professional) Differential Equation Solving sbval(v, x1, x2, D, load, score)	
sbval Syntax Description	 (Professional) Differential Equation Solving sbval(v, x1, x2, D, load, score) Converts a boundary value differential equation to an initial value problem. Useful when derivatives are continuous throughout. 	
sbval Syntax Description Arguments	 (Professional) Differential Equation Solving sbval(v, x1, x2, D, load, score) Converts a boundary value differential equation to an initial value problem. Useful when derivatives are continuous throughout. 	
sbval Syntax Description Arguments v	 (Professional) Differential Equation Solving sbval(v, x1, x2, D, load, score) Converts a boundary value differential equation to an initial value problem. Useful when derivatives are continuous throughout. real vector containing guesses for missing initial values 	
sbval Syntax Description Arguments v x1, x2	 (Professional) Differential Equation Solving sbval(v, x1, x2, D, load, score) Converts a boundary value differential equation to an initial value problem. Useful when derivatives are continuous throughout. real vector containing guesses for missing initial values real endpoints of the interval on which the solution to the DEs will be evaluated 	
sbval Syntax Description Arguments v x1, x2 D(x, y)	 (Professional) Differential Equation Solving sbval(v, x1, x2, D, load, score) Converts a boundary value differential equation to an initial value problem. Useful when derivatives are continuous throughout. real vector containing guesses for missing initial values real endpoints of the interval on which the solution to the DEs will be evaluated real <i>n</i>-element vector-valued function containing the derivatives of the unknown functions 	
sbval Syntax Description Arguments v x1, x2 D(x, y) load(x1, v)	 (Professional) Differential Equation Solving sbval(v, x1, x2, D, load, score) Converts a boundary value differential equation to an initial value problem. Useful when derivatives are continuous throughout. real vector containing guesses for missing initial values real endpoints of the interval on which the solution to the DEs will be evaluated real <i>n</i>-element vector-valued function containing the derivatives of the unknown functions real vector-valued function whose <i>n</i> elements correspond to the values of the <i>n</i> unknown functions at x1. Some of these values will be constants specified by your initial conditions. If a value is unknown, you should use the corresponding guess value from v 	

Example

 $y^{[0]}=y=0$ Convertite initial value problem: with a fit. y'(0) = 0 $v^{\alpha}(0) = 8$ gaaraa welaa kar 2 \mathbf{y}_{1} \mathbf{v}_{2} D vession for the differential equation: $\nabla^{(0)} : \nabla = 0$ SE . Б×., 8 e. Missing Initial conditions. to be used with ridiced

Comments

Initial value DE solvers like rkfixed assume that you know the value of the solution and its first n-1 derivatives at the beginning of the interval of integration. Two-point boundary value DE solvers, like sbval and bvalfit, may be used if you lack this information about the solution at the beginning of the interval of integration, but you do know something about the solution elsewhere in the interval. In particular:

- You have an *n*th order differential equation.
- You know some but not all of the values of the solution and its first n 1 derivatives at the beginning of the interval of integration, xI.
- You know some but not all of the values of the solution and its first n-1 derivatives at the end of the interval of integration, x^2 .
- Between what you know about the solution at *x1* and what you know about it at *x2*, you have *n* known values.

If there is a discontinuity at a point intermediate to xI and x2, you should use **bvalfit**. If continuity holds throughout, then use **sbval** to evaluate those initial values left unspecified at xI. **sbval** does not actually return a solution to a differential equation; it merely computes the initial values the solution must have in order for the solution to match the final values you specify. You must then take the initial values returned by **sbval** and solve the resulting initial value problem using **rkfixed** or any of the other more specialized DE solvers.

- Algorithm Shooting method with 4th order Runge-Kutta method (Press *et al.*, 1992)
- See also rkfixed for more details

search	(Professional) String
Syntax	search(S, SubS, m)
Description	Returns the starting position of the substring <i>SubS</i> in <i>S</i> beginning from position <i>m</i> . Returns -1 if the substring is not found.
Arguments S SubS m	string expression; Mathcad assumes that the first character in <i>S</i> is at position 0 substring expression integer, $m \ge 0$
sec	Trigonometric
Syntax	Sec (z), for z in radians; Sec (z·deg), for z in degrees
Description	Returns the secant of <i>z</i> .
Arguments z	real or complex number
sech	Hyperbolic
Syntax	sech(z)
Description	Returns the hyperbolic secant of z.
Arguments z	real or complex number
sign	Piecewise Continuous
Syntax	sign(x)
Description	Returns 0 if $x=0$, 1 if $x > 0$, and -1 otherwise.
Arguments x	real number
See also	csgn, signum

signum		Complex Numbers
Syntax	signum(z)	
Description	Returns 1 if $z=0$ and $z/ z $ otherwise.	
Arguments	real or complex number	
See also	csgn, sign	
sin		Trigonometric
Syntax	sin(z), for z in radians; $sin(z \cdot deg)$, for z in degrees	
Description	Returns the sine of <i>z</i> .	
Arguments z	real or complex number	
sinh		Hyperbolic
Syntax	$\sinh(z)$	
Description	Returns the hyperbolic sine of <i>z</i> .	
Arguments z	real or complex number	
skew		Statistics
Syntax	skew(A)	
Description	Returns the skewness of the elements of A :	

skew(A) =
$$\frac{mn}{(mn-1)(mn-2)} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \sum_{j=0}^{n-1} \left(\frac{\mathbf{A}_{i,j} - \mathrm{mean}(\mathbf{A})}{\mathrm{Stdev}(\mathbf{A})}\right)^3$$

Arguments A

real or complex $m \times n$ matrix or vector, $m \cdot n \ge 3$

Regression and Smoothing

slope

Syntax slope(vx, vy)

Description Returns the slope of the least-squares regression line.

real vector arguments of the same size

Arguments

vx, vy

Example

Comments

The functions slope and intercept return the slope and intercept of the line which best fits the data in a least-squares sense: $y = slope(\mathbf{vx}, \mathbf{vy}) \cdot x + intercept(\mathbf{vx}, \mathbf{vy})$.

Be sure that every element in the **vx** and **vy** arrays contains a data value. Since every element in an array must have a value, Mathcad assigns 0 to any elements not explicitly assigned.

These functions are useful not only when the data is inherently linear, but also when it is exponential. If x and y are related by $y = Ae^{kx}$, you can apply these functions to the logarithm of the data values and make use of the fact that $\ln(y) = \ln(A) + kx$, hence $A = \exp(\operatorname{intercept}(\mathbf{vx}, \ln(\mathbf{vy})))$ and $k = \operatorname{slope}(\mathbf{vx}, \ln(\mathbf{vy}))$.

The resulting fit weighs the errors differently from a least-squares exponential fit (which the function genfit provides) but is usually a good approximation.

See also intercept, stderr

sort

Syntax sort(v)

Description Returns the elements of vector **v** sorted in ascending order.

Arguments

v

vector

Example

Storting functions	1 = 13	$i = 0, 3,, x_i = \sin(i)$	
Farvectors :			
$x = \begin{bmatrix} 0 \\ 0.041 \\ 0.599 \\ 0.141 \end{bmatrix}$	sert (x.) =	reverse sort(x)) = $\begin{pmatrix} 0.909 \\ 0.949 \\ 0.149 \\ 0 \end{pmatrix}$	
For motions: $\mathbf{M}_{(1,j)} = \mod$	l(1+3, j+3)	H = H = H = H = H = H =	
Sorted on column		Sorted on list rev	
csart(M.e) -	0 2 1 0 0 3 3 3 0 0 4 4 2 1 0 5	$esort \mid H, x \rangle = \begin{pmatrix} 0 & 3 & 3 & 3 \\ 1 & 4 & 4 & 0 \\ 2 & 5 & 1 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$	

Comments All of Mathcad's sorting functions accept matrices and vectors with complex elements. However in sorting them, Mathcad ignores the imaginary part.

To sort a vector or matrix in descending order, first sort in ascending order, then use reverse. For example, reverse(sort(v)) returns the elements of v sorted in descending order.

Unless you change the value of ORIGIN, matrices are numbered starting with row zero and column zero. If you forget this, it's easy to make the error of sorting a matrix on the wrong row or column by specifying an incorrect n argument for rsort and csort. To sort on the first column of a matrix, for example, you must use csort(A, 0).

Algorithm Heap sort (Press *et al.*, 1992)

stack

Vector and Matrix

Syntax	stack(A, B)
Description	Returns a matrix formed by placing the matrix A above B .
Arguments A, B	two matrices or vectors; A and B must have the same number of columns
See also	augment for example

stderr

Statistics

Syntax stderr(vx, vy)

Description Returns the standard error associated with simple linear regression, measuring how closely data points are spread about the regression line.

stderr(**vx**, **vy**) =
$$\sqrt{\frac{1}{n-2}\sum_{i=0}^{n-1} (\mathbf{v}\mathbf{y}_i - (\text{intercept}(\mathbf{v}\mathbf{x}, \mathbf{v}\mathbf{y}) + \text{slope}(\mathbf{v}\mathbf{x}, \mathbf{v}\mathbf{y}) \cdot \mathbf{v}\mathbf{x}_i))^2}$$

Arguments

vx, vy real vector arguments of the same size

See also slope, intercept

stdev

Syntax Description	<pre>stdev(A) Returns the standard deviation of the elements of A, where mn (the sample size) is used in denominator: stdev(A) = $\sqrt{var(A)}$.</pre>	
Arguments A	real or complex $m \times n$ matrix or vector	
See also	Stdev, var, Var	
Stdev	Statistics	
Syntax	Stdev(A)	
Description	Returns the standard deviation of the elements of A , where $mn - 1$ (the sample size less one) is used in the denominator: Stdev(A) = $\sqrt{Var(A)}$.	
Arguments A	real or complex $m \times n$ matrix or vector	
See also	stdev, var, Var	

stiffb	(Professional)	Differential Equation Solving
Syntax	stiffb(y, x1, x2, acc, D, J, kmax, save)	
Description	Solves a differential equation using the stiff B estimate at x^2 .	ulirsch-Stoer method. Provides DE solution
Arguments	Several arguments for this function are the sar	me as described for rkfixed.
x1. x2	real endpoints of the solution interval.	
$\mathbf{D}(x, \mathbf{y})$	real vector-valued function containing the der	ivatives of the unknown functions.
acc	real <i>acc</i> > 0 controls the accuracy of the soluti take smaller steps along the trajectory, thereby of <i>acc</i> around 0.001 will generally yield accur	ion; a small value of <i>acc</i> forces the algorithm to y increasing the accuracy of the solution. Values rate solutions.
$\mathbf{J}(x, \mathbf{y})$	real vector-valued function which returns the the derivatives $\partial \mathbf{D} / \partial x$ and whose remaining the system of DEs.	$n \times (n + 1)$ matrix whose first column contains columns form the Jacobian matrix $(\partial \mathbf{D} / \partial y_k)$ for
kmax	integer <i>kmax</i> > 0 specifies maximum number be approximated; places an upper bound on th functions.	of intermediate points at which the solution will a number of rows of the matrix returned by these
save	real <i>save</i> > 0 specifies the smallest allowable s to be approximated; places a lower bound on th column of the matrix returned by the function	spacing between values at which the solutions are ne difference between any two numbers in the first
Comments	The specialized DE solvers Bulstoer , Rkadag a number of uniformly spaced <i>x</i> -values in the you want the value of the solution at only the e stiffr instead.	ot, Stiffb, and Stiffr provide the solution $y(x)$ over integration interval bounded by $x1$ and $x2$. When indpoint, $y(x2)$, use bulstoer, rkadapt, stiffb, and
Algorithm	Bulirsch-Stoer method with adaptive step size	e for stiff systems (Press et al., 1992)
See also	rkfixed, a more general differential equation s Stiffb.	solver, for information on output and arguments;

Stiffb	(Professional) Differential Equation Solving				
Syntax	Stiffb(y, x1, x2, npts, D, J)				
Description	Solves a differential equation using the stiff Bulirsch-Stoer method. Provides DE solution at equally spaced <i>x</i> values by repeated calls to stiffb.				
Arguments y	Several arguments for this function are the same as described for rkfixed. real vector of initial values.				
x1, x2	real endpoints of the solution interval.				
$\mathbf{D}(x, \mathbf{y})$	real vector-valued function containing the derivatives of the unknown functions.				
npts	integer $npts > 0$ specifies the number of points beyond initial point at which the solution is to be approximated; controls the number of rows in the matrix output.				
$\mathbf{J}(x, \mathbf{y})$	real vector-valued function which returns the $n \times (n + 1)$ matrix whose first column contains the derivatives $\partial \mathbf{D} / \partial x$ and whose remaining columns form the Jacobian matrix $(\partial \mathbf{D} / \partial y_k)$ for the system of DEs. For example, if:				
	$\mathbf{D}(x, \mathbf{y}) = \begin{bmatrix} x \cdot y_1 \\ -2 \cdot y_1 \cdot y_0 \end{bmatrix} \text{then} \mathbf{J}(x, \mathbf{y}) = \begin{bmatrix} y_1 & 0 & x \\ 0 & -2 \cdot y_1 & -2 \cdot y_0 \end{bmatrix}$				
Comments	A system of DEs expressed in the form $\mathbf{y} = \mathbf{A} \cdot \mathbf{x}$ is a stiff system if the matrix \mathbf{A} is nearly singular. Under these conditions, the solution returned by rkfixed may oscillate or be unstal. When solving a stiff system, you should use one of the two DE solvers specifically designed stiff systems: Stiffb and Stiffr. These use the Bulirsch-Stoer method and the Rosenbrock methrespectively, for stiff systems.				
	The form of the matrix returned by these functions is identical to that returned by rkfixed. However, Stiffb and Stiffr require an extra argument $J(x, y)$.				
Algorithm	Fixed-step Bulirsch-Stoer method with adaptive intermediate step size for stiff systems (Press <i>et al.</i> , 1992)				
See also	rkfixed, a more general differential equation solver, for information on output and arguments.				
stiffr	(Professional) Differential Equation Solving				
Syntax	stiffr(\mathbf{y} , $x1$, $x2$, acc , \mathbf{D} , \mathbf{J} , $kmax$, $save$)				
Description	Solves a differential equation using the stiff Rosenbrock method. Provides DE solution estimate at x^2 .				
Arguments y	Several arguments for this function the same as described for rkfixed . real vector of initial values.				
x1, x2	real endpoints of the solution interval.				
$\mathbf{D}(x, \mathbf{y})$	real vector-valued function containing the derivatives of the unknown functions.				
асс	real $acc > 0$ controls the accuracy of the solution; a small value of acc forces the algorithm to take smaller steps along the trajectory, thereby increasing the accuracy of the solution. Values of acc around 0.001 will generally yield accurate solutions.				

$\mathbf{J}(x, \mathbf{y})$	real vector-valued function that returns the $n \times (n + 1)$ matrix whose first column contains the derivatives $\partial \mathbf{D} / \partial x$ and whose remaining columns form the Jacobian matrix $(\partial \mathbf{D} / \partial y_k)$ for the system of DEs.
kmax	integer $kmax > 0$ specifies maximum number of intermediate points at which the solution will be approximated; places an upper bound on the number of rows of the matrix returned by these functions.
save	real $save > 0$ specifies the smallest allowable spacing between values at which the solutions are to be approximated; places a lower bound on the difference between any two numbers in the first column of the matrix returned by the function.
Comments	The specialized DE solvers Bulstoer, Rkadapt, Stiffb, and Stiffr provide the solution $y(x)$ over a number of uniformly spaced x-values in the integration interval bounded by $x1$ and $x2$. When you want the value of the solution at only the endpoint, $y(x2)$, use bulstoer, rkadapt, stiffb, and stiffr instead.
Algorithm	4th order Rosenbrock method with adaptive intermediate step size for stiff systems (Press <i>et al.</i> , 1992)
See also	rkfixed, a more general differential equation solver for information on output and arguments, and Stiffr
Stiffr	(Professional) Differential Equation Solving
Syntax	Stiffb $(\mathbf{y}, x1, x2, npts, \mathbf{D}, \mathbf{J})$
Description	Solves a differential equation using the stiff Rosenbrock method. Provides DE solution at equally spaced x values by repeated calls to stiff.
Arguments	Several arguments for this function are the same as described for rkfixed.
y r1 r2	real endpoints of the solution interval
$\mathbf{D}(\mathbf{x}, \mathbf{y})$	real vector-valued function containing the derivatives of the unknown functions
npts	integer $npts > 0$ specifies the number of points beyond initial point at which the solution is to be approximated; controls the number of rows in the matrix output.
$\mathbf{J}(x, \mathbf{y})$	real vector-valued function which returns the $n \times (n + 1)$ matrix whose first column contains the derivatives $\partial \mathbf{D} / \partial x$ and whose remaining columns form the Jacobian matrix $(\partial \mathbf{D} / \partial y_k)$ for the system of DEs. For example, if:
	$\mathbf{D}(x, \mathbf{y}) = \begin{bmatrix} x \cdot y_1 \\ -2 \cdot y_1 \cdot y_0 \end{bmatrix}, \text{then } \mathbf{J}(x, \mathbf{y}) = \begin{bmatrix} y_1 & 0 & x \\ 0 & -2 \cdot y_1 & -2 \cdot y_0 \end{bmatrix}$
Comments	A system of DEs expressed in the form $\mathbf{y} = \mathbf{A} \cdot \mathbf{x}$ is a stiff system if the matrix \mathbf{A} is nearly singular. Under these conditions, the solution returned by rkfixed may oscillate or be unstable. When solving a stiff system, you should use one of the two DE solvers specifically designed for stiff systems: Stiff and Stiffr These use the Bulirsch-Stoer method and the Rosenbrock method
	respectively, for stiff systems.

Algorithm	Fixed-step 4th order Rosenbrock method with adaptive intermediate step size for stiff systems (Press <i>et al.</i> , 1992)
See also	rkfixed, a more general differential equation solver, for information on output and arguments
str2num	(Professional) String
Syntax	str2num(S)
Description	Returns the constant formed by converting the characters in <i>S</i> into a number. Characters in <i>S</i> must constitute an integer such as 17, a real floating-point number such as -16.5 , a complex floating-point number such as $2.1+6i$ or $3.241 - 9.234j$, or an e-format number such as $4.51e^{-3}$ (for $4.51 \cdot 10^{-3}$). Mathcad ignores any spaces in the string.
Arguments	
S	string expression
See also	num2str
str2vec	(Professional) String
Syntax	str2vec(S)
Description	Returns the vector of ASCII codes corresponding to the characters in string <i>S</i> . For a list of ASCII codes, see Appendix to the <i>Mathcad User's Guide</i> . For example, the ASCII code for letter "a" is 97, that for letter "b" is 98, and that for letter "c" is 99.
Arguments	
S	string expression
See also	vec2str
strlen	(Professional) String
Syntax	strlen(S)
Description	Returns the number of characters in S.
Arguments S	string expression

submatrix

Syntax	submatrix(A,	ir, j	jr, i	ic, _.	jc)
--------	--------------	-------	-------	------------------	-----

Description Returns a submatrix of **A** consisting of all elements common to rows *ir* through *jr* and columns *ic* through *jc*. Make certain that $ir \le jr$ and $ic \le jc$, otherwise the order of rows and/or columns will be reversed.

Arguments

Α	$m \times n$ matrix or vector
ir, jr	integers, $0 \le ir \le jr \le m$
ic, jc	integers, $0 \le ic \le jc \le n$

Example

	[1]	7	1	4	4	ORIGIN - 0
	- 5	- 8	- 2	3	8	
М -	- 6	- 9	- 3	Ż	3	
	1	2	3	4	3	
	4	$\overline{0}$	$\overline{0}$	6	8.	
subm	atrico	(н.)	l.2.	0.;	2) -	$\left(\begin{matrix} -5 & -2 \\ -6 & -9 & -2 \end{matrix} \right) \stackrel{c-}{\underset{contained in both rows 0, 1 and 2{\overset{contained in both rows 0, 1 and 2{\overset{contained in both rows 0, 1 and 2}}.$
subr	adetao	(н.)	1, 2,	2.)	0) -	$\begin{pmatrix} -2 & -5 & -5 \\ -3 & -9 & -5 \end{pmatrix} \stackrel{c-}{\underset{add {\rm sequential traverses the }}{\underset{add {\rm sequential traverses the }}{\underset{add {\rm sequences}}{\underset{add {\rm sequences}}}}$
nation	adrix ((M.).S	8, 1,	2,4	9	$ \begin{pmatrix} -3 & -3 & -6 \\ -2 & -3 & -5 \end{pmatrix} c Steepping the first two arguments reverses the ender of the reves.$

substr	(Professional)	String
Syntax	substr(S, m, n)	
Description	Returns a substring of <i>S</i> beginning with the character in the <i>m</i> th position and havi characters.	ng at most <i>n</i>
Arguments	string expression. Mathcad assumes that the first character in S is at position 0.	
<i>m</i> , <i>n</i>	integers, $m \ge 0, n \ge 0$	

supsmooth (Professional)

Syntax supsmooth(vx, vy)

Description Creates a new vector, of the same size as vy, by piecewise use of a symmetric *k*-nearest neighbor linear least square fitting procedure in which *k* is adaptively chosen.

Arguments

vx, vy real vectors of the same size; elements of vx must be in ascending order

Example

- **Comments** The supsmooth function uses a symmetric *k* nearest neighbor linear least-squares fitting procedure to make a series of line segments through the data. Unlike ksmooth which uses a fixed bandwidth for all the data, supsmooth will adaptively choose different bandwidths for different portions of the data.
- Algorithm Variable span super-smoothing method (Friedman)
- See also medsmooth and ksmooth

svd	(Professional)	Vector and Matrix
Syntax	svd(A)	
Description	Returns an $(m+n) \times n$ matrix whose first <i>m</i> rows contain and whose remaining <i>n</i> rows contain the $n \times n$ orthonormal in the equation $\mathbf{A} = \mathbf{U} \cdot \text{diag}(\mathbf{s}) \cdot \mathbf{V}^{\mathbf{T}}$, where s is the vector ret	the $m \times n$ orthonormal matrix U , matrix V . Matrices U and V satisfy urned by $svds(A)$.
Arguments A	$m \times n$ real matrix, where $m \ge n$	

```
Example
```

E

	The mixin matrix A to be decomposed is defined at the bottom.	
	at := web(A) $v \sim (m - m)$ is a matrix resulting from the singular value decomposition	
	singula := $\operatorname{sub}(A) = <.$, vector scatting the singular values of A	
	ningsad - 133.214 40.405 21.404	
	$m = \operatorname{conv}(A) m = 0 \qquad m = \operatorname{conv}(A) \qquad n = 3$	
	$U > {\rm submatrix}(u; 0, m-1, 0, n-1) \qquad \qquad <_{\rm e} {\rm subtast} \ m \ {\rm s. n} \ {\rm orthonormal subtic} \ U$	
	$V := {\rm submatrix}({\rm int},m,m+n-1,0,n-1) \ \ {\rm extract} \ n \ n \ {\rm extract} \ n \ n \ {\rm extract} \ {\rm$	
	Compare A with U diag(singval) \boldsymbol{V}^{T} :	
	$\Delta_{\pi} \begin{bmatrix} 20 & 32 & -4 \\ 1.5 & 100 & -4 \\ -5.0 & 60 & 55 \\ 1.5 & 10 & 26 \\ -7 & 30 & 50 \\ 1.2 & 20 & 25 \end{bmatrix} = 0 \text{ diag(singval) } V^{T} = \begin{bmatrix} 20 & 32 & -4 \\ 0.5 & 100 & -4 \\ -5.0 & 60 & -15 \\ -5.0 & 26 \\ -7 & 30 & 10 \\ 0.2 & 20 & 25 \end{bmatrix} = V^{T} V = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$	
A Les e ritte ree		
Algoninn	Householder reduction with QR transformation (Wilkinson and Reinsch, 1971)	
- ·		
See also	svds	
See also	svds (Professional) Vector	and Matrix
See also svds Syntax	svds (Professional) Vector svds(A)	and Matrix
See also svds Syntax Description	svds (Professional) Vector svds(A) Returns a vector containing the singular values of A. Vector	and Matrix
See also svds Syntax Description Arguments	svds (Professional) Vector svds(A) Vector Returns a vector containing the singular values of A. Vector	and Matrix
See also svds Syntax Description Arguments A	svdsVector(Professional)Vector $svds(A)$ VectorReturns a vector containing the singular values of A . $m \times n$ real matrix, where $m \ge n$	and Matrix
See also svds Syntax Description Arguments A Algorithm	svdsVector $(Professional)$ Vector $svds(A)$ VectorReturns a vector containing the singular values of A. $m \times n$ real matrix, where $m \ge n$ Householder reduction with QR transformation (Wilkinson and Reinsch, 1971)	and Matrix
See also svds Syntax Description Arguments A Algorithm See also	svdsVector $(Professional)$ Vector $svds(A)$ VectorReturns a vector containing the singular values of A.Vector $m \times n$ real matrix, where $m \ge n$ Householder reduction with QR transformation (Wilkinson and Reinsch, 1971) svd	and Matrix
See also svds Syntax Description Arguments A Algorithm See also	svds (Professional) Vector svds(A) Returns a vector containing the singular values of A. $m \times n$ real matrix, where $m \ge n$ Householder reduction with QR transformation (Wilkinson and Reinsch, 1971) svd	and Matrix
See also Svds Syntax Description Arguments A Algorithm See also tan	svdsVector $(Professional)$ Vector $svds(A)$ VectorReturns a vector containing the singular values of A.Vector $m \times n$ real matrix, where $m \ge n$ Householder reduction with QR transformation (Wilkinson and Reinsch, 1971) svd Trice	and Matrix
See also Syntax Description Arguments A Algorithm See also tan Syntax	svds (Professional) Vector svds(A) Vector Returns a vector containing the singular values of A. $m \times n$ real matrix, where $m \ge n$ Householder reduction with QR transformation (Wilkinson and Reinsch, 1971) svd Trict $tan(z)$ for z in radians; $tan(z \cdot deg)$, for z in degrees Trict tan(z \cdot deg), for z in degrees	and Matrix
See also Syntax Description Arguments Algorithm See also tan Syntax Description	svdsVector $(Professional)$ Vector $svds(A)$ VectorReturns a vector containing the singular values of A. $m \times n$ real matrix, where $m \ge n$ Householder reduction with QR transformation (Wilkinson and Reinsch, 1971)svd svd Trict tan(z) for z in radians; tan(z-deg), for z in degreesReturns the tangent of z. z	and Matrix
See also Syntax Description Arguments Algorithm See also tan Syntax Description Arguments	svdsVector $(Professional)$ Vector $svds(A)$ Returns a vector containing the singular values of A. $m \times n$ real matrix, where $m \ge n$ Householder reduction with QR transformation (Wilkinson and Reinsch, 1971) svd Tric $tan(z)$ for z in radians; $tan(z deg), for z in degreesReturns the tangent of z.$	and Matrix

٦

tanh	Hyperbolic
Syntax	tanh(z)
Description	Returns the hyperbolic tangent of <i>z</i> .
Arguments <i>z</i>	real or complex number
Tcheb	(Professional) Special
Syntax	Tcheb(n, x)
Description	Returns the value of the Chebyshev polynomial of degree n of the first kind.
Arguments n x	integer, $n \ge 0$ real number
Comments	Solution of the differential equation $(1-x^2) \cdot \frac{d^2}{dx^2}y - x \cdot \frac{d}{dx}y + n^2 \cdot y = 0$.
Algorithm	Recurrence relation (Abramowitz and Stegun, 1972)
See also	Ucheb
tr	Vector and Matrix
Syntax	tr(M)
Description	Returns the trace of M, the sum of diagonal elements.
Arguments M	real or complex square matrix
trunc	Truncation and Round-off
Syntax	trunc(x)
Description	Returns the integer part of x. Same as $floor(x)$ for $x > 0$ and $ceil(x)$ for $x < 0$.
Arguments x	real number
See also	ceil, floor, round

Ucheb	(Professional) Special
Syntax	Ucheb(<i>n</i> , <i>x</i>)
Description	Returns the value of the Chebyshev polynomial of degree n of the second kind.
Arguments n x	integer, $n \ge 0$ real number
Comments	Solution of the differential equation $(1-x^2) \cdot \frac{d^2}{dx^2}y - 3 \cdot x \cdot \frac{d}{dx}y + n \cdot (n+2) \cdot y = 0$.
Algorithm	Recurrence relation (Abramowitz and Stegun, 1972) dx
See also	Tcheb
var	Statistics
Syntax	var(A)
Description	Returns the variance of the elements of A : $\operatorname{var}(\mathbf{A}) = \frac{1}{mn} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} A_{i,j} - \operatorname{mean}(\mathbf{A}) ^2$.
	This expression is normalized by the sample size <i>mn</i> .
Arguments A	real or complex $m \times n$ matrix or array
See also	stdev, Stdev, Var
Var	Statistics
Syntax	Var(A)
Description	Returns the variance of the elements of A : $\operatorname{var}(\mathbf{A}) = \frac{1}{mn-1} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} A_{i,j} - \operatorname{mean}(\mathbf{A}) ^2$.
	This expression is normalized by the sample size less one, $mn - 1$.
Arguments A	real or complex $m \times n$ matrix or array
See also	stdev, Stdev, var

vec2str	(Professional)	String
Syntax	vec2str(v)	
Description	Returns the string formed by converting a vector \mathbf{v} of ASCII codes to of \mathbf{v} must be integers between 0 and 255.	characters. The elements
Arguments		
v	vector of ASCII codes	
See also	str2vec	
wave	(Professional)	Wavelet Transform
Syntax	wave(v)	
Description	Returns the discrete wavelet transform of real data using Daubechies filter.	four-coefficient wavelet
Arguments v	real vector of 2^n elements, where $n > 0$ is an integer	

Example

Comments	When you define a vector v for use with Fourier or wavelet transforms, be sure to start with v_0 (or change the value of ORIGIN). If you do not define v_0 , Mathcad automatically sets it to zero. This can distort the results of the transform functions.
Algorithm	Pyramidal Daubechies 4-coefficient wavelet filter (Press et al., 1992)
See also	iwave

WRITEBMP

File Access

File Access

File Access

Syntax	WRITEBMP(file)
Description	Creates a grayscale BMP image file <i>file</i> out of a matrix. Used as follows: WRITEBMP(<i>file</i>) := \mathbf{M} . The function must appear alone on the left side of a definition.
Arguments	string variable corresponding to BMP filename or path
M	integer matrix, each element satisfying $0 \le \mathbf{M}_{i,i} \le 255$

WRITE HLS (Professional)

Syntax WRITE_HLS(file) Description Creates a color BMP image file *file* out of a matrix formed by juxtaposing the three matrices giving the hue, lightness, and saturation components of an image. Arguments string variable corresponding to BMP filename or path file integer matrix, each element satisfying $0 \le \mathbf{M}_{i,j} \le 255$ Μ

See also See WRITERGB for an overview of creating color data files.

WRITE HSV (Professional)

Syntax WRITE_HSV(file)

Description Creates a color BMP image file file out of a matrix formed by juxtaposing the three matrices giving the hue, saturation, and value components of an image.

Arguments

file string variable corresponding to BMP filename or path

Μ integer matrix, each element satisfying $0 \le \mathbf{M}_{i,i} \le 255$

See also See WRITERGB for overview.

WRITEPRN

Syntax WRITEPRN(*file*) := A

Description Writes a matrix **A** into a structured ASCII data file *file*. Each row becomes a line in the file. The function must appear alone on the left side of a definition.

Arguments

Α

file string variable corresponding to structured ASCII data filename or path

matrix or vector

Comments The WRITEPRN and APPENDPRN functions write out data values neatly lined up in rows and columns. When you use these functions:

- Equations using WRITEPRN or APPENDPRN must be in a specified form. On the left should be WRITEPRN(*file*) or APPENDPRN(*file*). This is followed by a definition symbol (:=) and a matrix expression. Do not use range variables or subscripts on the matrix expression.
- Each new equation involving WRITEPRN writes a new file; if two equations write to the same file, the data written by the second equation will overwrite the data written by the first. Use APPENDPRN if you want to append values to a file rather than overwrite the file.
- The built-in variables *PRNCOLWIDTH* and *PRNPRECISION* determine the format of the data file that Mathcad creates. The value of *PRNCOLWIDTH* specifies the width of the columns (in characters). The value of *PRNPRECISION* specifies the number of significant digits used. By default, *PRNCOLWIDTH*=8 and *PRNPRECISION*=4. To change these values, choose **Options** from the **Math** menu and edit the numbers on the Built-In Variables tab, or enter definitions for these variables in your Mathcad document above the WRITEPRN function.

WRITEPRN and READPRN allow you to write out and read in *nested arrays* created in Mathcad Professional.

If the array you are writing is either a nested array (an array whose elements are themselves arrays) or a complex array (an array whose elements are complex), then WRITEPRN will *not* create a simple ASCII file. Instead, WRITEPRN creates a file using a special format unlikely to be readable by other applications. This file can, however, be read by Mathcad's READPRN function.

By using the **augment** function, you can concatenate several variables and write them all using WRITEPRN to a data file.

See also APPENDPRN

WRITERGB

Bessel

Bessel

Syntax	WRITERGB(file)
Description	Creates a color BMP image file <i>file</i> out of a single matrix formed by juxtaposing the three matrices giving the red, green, and blue values of an image. Used as follows: WRITERGB(<i>file</i>) := \mathbf{M} . The function must appear alone on the left side of a definition.
Arguments	
file	string variable corresponding to BMP filename or path
Μ	integer matrix, each element satisfying $0 \le \mathbf{M}_{i,j} \le 255$
Comments	The function augment is helpful for combining submatrices prior to using WRITERGB.
	Mathcad Professional has functions for creating color BMP files out of matrices in which the image is stored in HLS or HSV format. These work in exactly the same way as WRITERGB.
See also	WRITE_HLS and WRITE_HSV

Y0

Syntax	Y0 (<i>x</i>)
Description	Returns the value of the Bessel function $Y_0(x)$ of the second kind. Same as $Yn(0, x)$.
Arguments x	real number, $x > 0$
Algorithm	Steed's method (Press et al., 1992)

Y1

Syntax	Y1(<i>x</i>)
Description	Returns the value of the Bessel function $Y_1(x)$ of the second kind. Same as $Yn(1, x)$.
Arguments x	real number, $x > 0$
Algorithm	Steed's method (Press et al., 1992)

Bessel

Yn	Be	essel
Syntax	Yn(<i>m</i> , <i>x</i>)	
Description	Returns the value of the Bessel function $Y_m(x)$ of the second kind.	
Arguments m x	integer, $0 \le m \le 100$ real number, $x > 0$	
Comments	Solution of the differential equation $x^2 \cdot \frac{d^2}{dx^2}y + x \cdot \frac{d}{dx}y + (x^2 - n^2) \cdot y = 0$.	
Algorithm	Steed's method (Press <i>et al.</i> , 1992)	
See also	Jn	
ys	(Professional) Be	essel
Syntax	ys(n, x)	
Description	Returns the value of the spherical Bessel function of the second kind, of order n , at x .	
Arguments x	real number, $x > 0$ integer	
Comments	Solution of the differential equation: $x^2 \cdot \frac{d^2}{dx^2}y + 2 \cdot x \cdot \frac{d}{dx}y + (x^2 - n \cdot (n+1))y = 0$.	
Algorithm	dx^2 dx Recurrence relation (Abramowitz and Stegun, 1972)	
See also	js	
δ	Piecewise Contin	uous
Syntax	$\delta(m, n)$	
Description	Returns the value of the Kronecker delta function. Output is 1 if $m=n$ and 0 otherwise. (To type δ , press d [Ctrl]G).	
Arguments <i>m, n</i>	integers	
Algorithm	Continued fraction expansion (Abramowitz and Stegun, 1972; Lorczak)	

ε

Syntax	$\mathbf{E}(i, j, k)$
Description	Returns the value of a completely antisymmetric tensor of rank three. Output is 0 if any two arguments are the same, 1 if the three arguments are an even permutation of (0 1 2), and -1 if the arguments are an odd permutation of (0 1 2). (To type ε , press e [Ctrl]g).
Arguments <i>i, j, k</i>	integers between 0 and 2 inclusive (or between ORIGIN and ORIGIN+2 inclusive if ORIGIN≠0)
Γ	Special

Classical Definition	י חמ
Syntax	$\Gamma(z)$
Description	Returns the value of the classical Euler gamma function. (To type Γ , press G[Ctrl]g).
Arguments z	real or complex number; undefined for $z = 0, -1, -2,$
Description	For $\operatorname{Re}(z) > 0$, $\Gamma(z) = \int_{0}^{\infty} t^{z-1} e^{-t} dt$.
	For Re(z) < 0, function values analytically continue the above formula. Because $\Gamma(z + 1) = z!$, the gamma function extends the factorial function (traditionally defined only for positive integers).
Extended Definiti	on
Syntax	$\Gamma(x, y)$
Description	Returns the value of the extended Euler gamma function. (To type Γ , press G[Ctrl]g).
Arguments <i>x</i> , <i>y</i>	real numbers, $x > 0, y \ge 0$
Description	Although restricted to real arguments, the function $\Gamma(x, y) = \int_{y}^{\infty} t^{x-1} e^{-t} dt$
	extends the classical gamma function in the sense that the lower limit of integration y is free to vary. In the special case when $y=0$, the classical formulation applies and the first argument may assume complex values.

Φ	Piecewise Continuous
Syntax	$\mathbf{\Phi}(x)$
Description	Returns the value of the Heaviside step function. Output is 1 if $x \ge 0$ and 0 otherwise. (To type Φ , press F [Ctr1]g).
Arguments x	real number
Example	$\begin{array}{l} pulse_{1}(\mathbf{x},\mathbf{w}) > \Phi(\mathbf{x}) - \Phi(\mathbf{x} - \mathbf{w}) \\ lowpean(\mathbf{x},\mathbf{w}) > palee(\mathbf{x} + \mathbf{w}, 2 \cdot \mathbf{w}) \\ highpean(\mathbf{x},\mathbf{w}) > 1 - pulse(\mathbf{x} + \mathbf{w}, 2 \cdot \mathbf{w}) \\ bandpean(\mathbf{x},\mathbf{w}, \ell) > palee(\mathbf{x} - 1, \mathbf{w}) \\ c = -21, -10.5, 20 \end{array}$ The three filters are plotted below with a vertical effective year can see them more easily.

 (\mathbf{E}, \mathbf{x}) as

 $\frac{\text{High}_{\text{planes}}(x,\theta) = 2}{\text{hand}_{\text{planes}}(x,\theta) + 2}$

le:

ar.